题目内容
【题目】已知等比数列的前项和为,且函数,若方程至少有三个实数根,则实数的取值范围是( )
A.B.C.D.
【答案】C
【解析】
由等比数列前项和的性质,求得参数,再将方程根的个数的问题,转化为函数图像交点个数的问题,利用导数求得直线与函数相切时的斜率,即可求得参数的范围.
因为等比数列的前项和为
根据等比数列前项和的性质,容易知,解得.
令,则
方程至少有三个实数根
等价于至少有三个实数根,
也等价于函数与直线有至少三个交点,
又是斜率为,且恒过的直线,
故只需求出函数与直线有三个交点的临界状态时,对应直线的斜率即可.
则在同一直角坐标系下画出函数图像如下所示:
由图可知,当直线与相切时,恰有三个交点,
设切点为,,故过切点的切线方程为:
,又因为,且该切线过点
故可得
即,解得,
故切点为,此时直线的斜率为
此时有三个交点,故可取;
又根据图象可知,当直线过点时,也是临界状态,
此时直线的斜率为
此时有三个交点,故可取;
综上所述,要满足题意,只需即可.
故选:C.
练习册系列答案
相关题目