题目内容
已知Sn是数列{an}的前n项和,且an=Sn-1+2(n≥2),a1=2.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn=bn+1+bn+2+…+b2n,是否存在最大的正整数k,使得对于任意的正整数n,有Tn>
恒成立?若存在,求出k的值;若不存在,说明理由.
(1)求数列{an}的通项公式;
(2)设bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059104421.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059136335.gif)
(1)an=2·2n-1=2n(2)存在最大正整数k=5使Tn>
恒成立
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059136335.gif)
(1)由已知an=Sn-1+2 ①
得an+1=Sn+2 ②
②-①,得an+1-an=Sn-Sn-1 (n≥2),
∴an+1=2an (n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an (n=1,2,3,…)
所以数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n.
(2)bn=
=
=
,
∴Tn=bn+1+bn+2+…+b2n=
+
+…+
,
Tn+1=bn+2+bn+3+…+b2(n+1)
=
+
+…+
+
+
.
∴Tn+1-Tn=
+
-![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059214244.gif)
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059494778.gif)
=
.
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列,
又T1=b2=
,∴Tn≥T1=
,
要使Tn>
恒成立,则有
>
,即k﹤6,
又k是正整数,故存在最大正整数k=5使Tn>
恒成立.
得an+1=Sn+2 ②
②-①,得an+1-an=Sn-Sn-1 (n≥2),
∴an+1=2an (n≥2).
又a1=2,∴a2=a1+2=4=2a1,
∴an+1=2an (n=1,2,3,…)
所以数列{an}是一个以2为首项,2为公比的等比数列,
∴an=2·2n-1=2n.
(2)bn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059104421.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059182416.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059198214.gif)
∴Tn=bn+1+bn+2+…+b2n=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059214244.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059229358.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059229335.gif)
Tn+1=bn+2+bn+3+…+b2(n+1)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059229358.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059260357.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059229335.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059292371.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059307377.gif)
∴Tn+1-Tn=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059292371.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059307377.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059214244.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059494778.gif)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059510501.gif)
∵n是正整数,∴Tn+1-Tn>0,即Tn+1>Tn.
∴数列{Tn}是一个单调递增数列,
又T1=b2=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059526206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059526206.gif)
要使Tn>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059136335.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059526206.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059136335.gif)
又k是正整数,故存在最大正整数k=5使Tn>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823130059136335.gif)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目