题目内容
【题目】在平面直角坐标系中,已知直线的方程为,曲线是以坐标原点为顶点,直线为准线的抛物线.以坐标原点为极点,轴非负半轴为极轴建立极坐标系.
(1)分别求出直线与曲线的极坐标方程:
(2)点是曲线上位于第一象限内的一个动点,点是直线上位于第二象限内的一个动点,且,请求出的最大值.
【答案】(1),;(2)
【解析】
(1)由抛物线的准线方程易得抛物线方程,再用,,可将直线与曲线的直角坐标系方程转化为极坐标系方程;(2)直接在极坐标系下设点A、B的坐标,然后计算其比值,求出最大值即可.
(1)因为,所以直线的极坐标系方程为,
又因为直线为抛物线的准线,所以抛物线开口朝右,且,即
所以曲线的平面直角坐标系方程为,
因为,
所以极坐标系方程为;
(2)设,则,则,.
记,则
则
因为,当且仅当时取等号
所以
所以取最大值为.
练习册系列答案
相关题目