题目内容
【题目】某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.
(1)求底面积,并用含x的表达式表示池壁面积;
(2)怎样设计水池能使总造价最低?最低造价是多少?
【答案】(1)1600,(平方米);(2)池底设计为边长40米的正方形时总造价最低,最低造价为268800元.
【解析】
(1)根据题意,由于修建一个长方体无盖蓄水池,
其容积为4 800立方米,深度为3米.
可得底面积为1600,池壁面积s=.
(2)同时池底每平方米的造价为150元,池壁每平方米的造价为120元.
设池底长方形长为x米,
则可知总造价s=,x=40时,
则.
故可知当x=40时,则有可使得总造价最低,
最低造价是268800元.
【题目】某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组 | |||||
企业数 | 2 | 24 | 53 | 14 | 7 |
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
【题目】十八大以来,我国新能源产业迅速发展.以下是近几年某新能源产品的年销售量数据:
年份 | 2014 | 2015 | 2016 | 2017 | 2018 |
年份代码 | 1 | 2 | 3 | 4 | 5 |
新能源产品年销售(万个) | 1.6 | 6.2 | 17.7 | 33.1 | 55.6 |
(1)请画出上表中年份代码与年销量的数据对应的散点图,并根据散点图判断.
与中哪一个更适宜作为年销售量关于年份代码的回归方程类型;
(2)根据(Ⅰ)的判断结果及表中数据,建立关于的回归方程,并预测2019年某新能源产品的销售量(精确到0.01).
参考公式:,.
参考数据:,,,,,,,其中.
【题目】总体由编号为01,02,03,,49,50的50个个体组成,利用随机数表(以下选取了随机数表中的第1行和第2行)选取5个个体,选取方法是从随机数表第1行的第9列和第10列数字开始由左向右读取,则选出来的第4个个体的编号为( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20