题目内容
【题目】已知函数,.
(1)若函数的图像与轴无交点,求的取值范围;
(2)若方程在区间上存在实根,求的取值范围;
(3)设函数,,当时若对任意的,总存在,使得,求的取值范围.
【答案】(1);(2);(3)或.
【解析】
(1)函数与轴无交点,即方程没有实数根,即可求得的取值范围;(2)函数的对称轴是,所以函数在上单调递减,则需满足;(3)根据题意可知,函数在上的函数值的取值集合是函数在上的函数值的取值集合的子集,对于函数,可分讨论函数的值域,利用子集关系列不等式求的范围.
(1)若函数的图象与轴无关点,则方程的根的判别式,即,解得.
故的取值范围为.
(2)因为函数的图象的对称轴是直线,
所以在上是减函数.
又在上存在零点,所以,即,解得.
故的取值范围为.
(3)若对任意的,总存在,使得,则函数在上的函数值的取值集合是函数在上的函数值的取值集合的子集.
当时,函数图象的对称轴是直线,所以在上的函数值的取值集合为.
①当时,,不符合题意,舍去.
②当时,在上的值域为,只需,解得.
③当时,在上的值域为,只需,解得.
综上,的取值范围为或.
【题目】对某市工薪阶层关于“楼市限购政策”的态度进行调查,随机抽查了人,他们月收入(单位:百元)的频数分布及对“楼市限购政策”赞成人数如下表:
月收入(百元) | ||||||
频数 | 5 | 10 | 15 | 10 | 5 | 5 |
赞成人数 | 4 | 8 | 12 | 5 | 2 | 1 |
(1))根据以上统计数据填写下面列联表,并回答是否有的把握认为月收入以百元为分界点对“楼市限购政策”的态度有差异?
月收入低于55百元人数 | 月收入不低于55百元人数 | 总计 | |
赞成 | |||
不赞成 | |||
总计 |
(2)若从月收入在的被调查对象中随机选取人进行调查,求至少有一人赞成“楼市限购政策”的概率.
(参考公式:,其中)
参考值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
【题目】某省数学学业水平考试成绩共分为、、、四个等级,在学业水平考试成绩分布后,从该省某地区考生中随机抽取名考生,统计他们的数学成绩,部分数据如下:
等级 | ||||
频数 | ||||
频率 |
(1)补充完成上述表格的数据;
(2)现按上述四个等级,用分层抽样方法从这名考生中抽取名.在这名考生中,从成绩为等和等的所有考生中随机抽取名,求至少有名成绩为等的概率.
【题目】某家庭记录了未使用节水龙头50天的日用水量数据(单位:m3)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:
未使用节水龙头50天的日用水量频数分布表
日用 水量 | |||||||
频数 | 1 | 3 | 2 | 4 | 9 | 26 | 5 |
使用了节水龙头50天的日用水量频数分布表
日用 水量 | ||||||
频数 | 1 | 5 | 13 | 10 | 16 | 5 |
(1)在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于0.35 m3的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表.)