题目内容
已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线x+y+4=0有且仅有一个交点,则椭圆的长轴长为( )
A.3 | B.2 | C.2 | D.4 |
C
设椭圆长轴长为2a(且a>2),则椭圆方程为+=1.
由,+=1
得(4a2-12)y2+8(a2-4)y+(16-a2)(a2-4)=0.
∵直线与椭圆只有一个交点,∴△=0,即192(a2-4)2-16(a2-3)×(16-a2)×(a2-4)=0.
解得a=0(舍去),a=2(舍去),a=.∴长轴长2a=2.
故选C.
由,+=1
∵直线与椭圆只有一个交点,∴△=0,即192(a2-4)2-16(a2-3)×(16-a2)×(a2-4)=0.
解得a=0(舍去),a=2(舍去),a=.∴长轴长2a=2.
故选C.
练习册系列答案
相关题目