ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÍÖÔ²C£º
+
=1£¨a£¾b£¾0£©µÄ¶¥µãΪA1£¬A2£¬B1£¬B2£¬½¹µãΪF1£¬F2£¬|A1B2|=
£¬S?A1B1A2B2=2S?B1F1B2F2
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔµãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
|=1£¬ÊÇ·ñ´æÔÚÉÏÊöÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣿Èô´æÔÚ£¬Çó³öÖ±ÏßlµÄ·½³Ì£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
x2 |
a2 |
y2 |
b2 |
7 |
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÉèÖ±Ïßm¹ýQ£¨1£¬1£©£¬ÇÒÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬µ±QÊÇMNµÄÖеãʱ£¬ÇóÖ±ÏßmµÄ·½³Ì£®
£¨¢ó£©ÉènΪ¹ýÔµãµÄÖ±Ïߣ¬lÊÇÓën´¹Ö±ÏཻÓÚPµãÇÒÓëÍÖÔ²ÏཻÓÚÁ½µãA£¬BµÄÖ±Ïߣ¬|
OP |
£¨¢ñ£©ÒÀÌâÒâÓÐ|A1B2|=
=
¡àa2+b2=7¡£¨1·Ö£©
ÓÖÓÉS¡õA1B1A2B2=2S¡õB1F1B2F2£®ÓÐ2a•b=2•2c•b£¬¡àa=2c¡£¨2·Ö£©
½âµÃa2=4£¬b2=3£¬¡£¨3·Ö£©£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ
+
=1£®¡£¨4·Ö£©
£¨¢ò£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò
+
=1£¬
+
=1£¬
Á½Ê½Ïà¼õµÃ£ºk=
=-
¡Á
£®
¡ßQÊÇMNµÄÖе㣬
¡à¿ÉµÃÖ±ÏßmµÄбÂÊΪk=
=-
£¬£¨7·Ö£©
µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬½«x=1´úÈëÍÖÔ²·½³Ì²¢½âµÃM(1£¬
)£¬N(1£¬-
)£¬
ÕâʱMNµÄÖеãΪ£¨1£¬0£©£¬
¡àx=1²»·ûºÏÌâÉèÒªÇ󣮡£¨8·Ö£©
×ÛÉÏ£¬Ö±ÏßmµÄ·½³ÌΪ3x+4y-7=0¡£¨9·Ö£©
£¨¢ó£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¼ÙÉèÂú×ãÌâÉèµÄÖ±Ïßl´æÔÚ£¬
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|
|=1µÃ
=1£¬¼´m2=k2+1£¬¡£¨10·Ö£©
ÓÖ¡ßÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣬¡àOA¡ÍOB£¬¡àx1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8kmx+£¨4m2-12£©=0£¬
ÓÉÇó¸ù¹«Ê½¿ÉµÃx1+x2=
£¬¢Üx1x2=
£®¢Ý
0=x1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2£¬
½«¢Ü£¬¢Ý´úÈëÉÏʽ²¢»¯¼òµÃ£¨1+k2£©£¨4m2-12£©-8k2m2+m2£¨3+4k2£©=0£¬¢Þ
½«m2=1+k2´úÈë¢Þ²¢»¯¼òµÃ-5£¨k2+1£©=0£¬Ã¬¶Ü£®
¼´´ËʱֱÏßl²»´æÔÚ£®¡£¨12·Ö£©
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã|
|=1µÄÖ±ÏßlµÄ·½³ÌΪx=1»òx=-1£¬
ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
£©£¬£¨1£¬-
£©»ò£¨-1£¬
£©£¬£¨-1£¬-
£©£®
µ±x=1ʱ£¬
•
=£¨1£¬
£©•£¨1£¬-
£©=-
¡Ù0£¬
µ±x=-1ʱ£¬
•
=£¨-1£¬
£©•£¨-1£¬-
£©=-
¡Ù0£®
¡à´ËʱֱÏßlÒ²²»´æÔÚ£®
×ÛÉÏËùÊö£¬Ê¹
•
=0³ÉÁ¢µÄÖ±Ïßl²»³ÉÁ¢£¬¼´²»´æÔÚÖ±ÏßlʹÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣮
a2+b2 |
7£¬ |
ÓÖÓÉS¡õA1B1A2B2=2S¡õB1F1B2F2£®ÓÐ2a•b=2•2c•b£¬¡àa=2c¡£¨2·Ö£©
½âµÃa2=4£¬b2=3£¬¡£¨3·Ö£©£¬
¹ÊÍÖÔ²CµÄ·½³ÌΪ
x2 |
4 |
y2 |
3 |
£¨¢ò£©µ±Ö±ÏßmµÄбÂÊ´æÔÚʱ£¬ÉèÖ±ÏßmµÄ·½³ÌΪy=k£¨x-1£©+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬
Ôò
| ||
4 |
| ||
3 |
| ||
4 |
| ||
3 |
Á½Ê½Ïà¼õµÃ£ºk=
y1-y2 |
x1-x2 |
3 |
4 |
x1+x2 |
y1+y2 |
¡ßQÊÇMNµÄÖе㣬
¡à¿ÉµÃÖ±ÏßmµÄбÂÊΪk=
y1-y2 |
x1-x2 |
3 |
4 |
µ±Ö±ÏßmµÄбÂʲ»´æÔÚʱ£¬½«x=1´úÈëÍÖÔ²·½³Ì²¢½âµÃM(1£¬
3 |
2 |
3 |
2 |
ÕâʱMNµÄÖеãΪ£¨1£¬0£©£¬
¡àx=1²»·ûºÏÌâÉèÒªÇ󣮡£¨8·Ö£©
×ÛÉÏ£¬Ö±ÏßmµÄ·½³ÌΪ3x+4y-7=0¡£¨9·Ö£©
£¨¢ó£©ÉèA£¬BÁ½µãµÄ×ø±ê·Ö±ðΪ£¨x1£¬y1£©£¬£¨x2£¬y2£©£¬¼ÙÉèÂú×ãÌâÉèµÄÖ±Ïßl´æÔÚ£¬
£¨i£©µ±l²»´¹Ö±ÓÚxÖáʱ£¬ÉèlµÄ·½³ÌΪy=kx+m£¬ÓÉlÓën´¹Ö±ÏཻÓÚPµãÇÒ|
OP |
|m| | ||
|
ÓÖ¡ßÒÔABΪֱ¾¶µÄÔ²¹ýԵ㣬¡àOA¡ÍOB£¬¡àx1x2+y1y2=0£®
½«y=kx+m´úÈëÍÖÔ²·½³Ì£¬µÃ£¨3+4k2£©x2+8kmx+£¨4m2-12£©=0£¬
ÓÉÇó¸ù¹«Ê½¿ÉµÃx1+x2=
-8km |
3+4k2 |
4m2-12 |
3+4k2 |
0=x1x2+y1y2=x1x2+£¨kx1+m£©£¨kx2+m£©=x1x2+k2x1x2+km(x1+x2)+m2=(1+k2)x1x2+km(x1+x2)+m2£¬
½«¢Ü£¬¢Ý´úÈëÉÏʽ²¢»¯¼òµÃ£¨1+k2£©£¨4m2-12£©-8k2m2+m2£¨3+4k2£©=0£¬¢Þ
½«m2=1+k2´úÈë¢Þ²¢»¯¼òµÃ-5£¨k2+1£©=0£¬Ã¬¶Ü£®
¼´´ËʱֱÏßl²»´æÔÚ£®¡£¨12·Ö£©
£¨ii£©µ±l´¹Ö±ÓÚxÖáʱ£¬Âú×ã|
OP |
ÓÉA¡¢BÁ½µãµÄ×ø±êΪ£¨1£¬
3 |
2 |
3 |
2 |
3 |
2 |
3 |
2 |
µ±x=1ʱ£¬
OA |
OB |
3 |
2 |
3 |
2 |
5 |
4 |
µ±x=-1ʱ£¬
OA |
OB |
3 |
2 |
3 |
2 |
5 |
4 |
¡à´ËʱֱÏßlÒ²²»´æÔÚ£®
×ÛÉÏËùÊö£¬Ê¹
OA |
OB |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿