题目内容
【题目】设f(x)为定义在R上的奇函数.如图是函数图象的一部分,当0≤x≤2时,是线段OA;当x>2时,图象是顶点为P(3,4)的抛物线的一部分.
(1)在图中的直角坐标系中画出函数f(x)的图象;
(2)求函数f(x)在[2,+∞)上的解析式;
(3)写出函数f(x)的单调区间.
【答案】(1)见解析;(2)f(x)=-2(x-3)2+4;(3)f(x)的单调递减区间为(-∞,-3]和[3,+∞),单调递增区间为[-3,3].
【解析】试题分析:
(1)利用奇函数关于原点对称可得图象;
(2)y=f(x)的图象时顶点在P(3,4),且过点A(2,2)的抛物线的一部分,利用抛物线的顶点式写出其解析式即可.
(3)由(1)中函数图象可知函数的单调区间.
试题解析:
(1)图象如图所示.
(2)当x≥2时,设f(x)=a(x-3)2+4(a≠0).
因为f(x)的图象过点A(2,2),
所以f(2)=a(2-3)2+4=2所以a=-2.
所以f(x)=-2(x-3)2+4.
(3)由f(x)的图象知,f(x)的单调递减区间为(-∞,-3]和[3,+∞),单调递增区间为[-3,3].
【题目】某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下资料:
日 期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差(°C) | 10 | 11 | 13 | 12 | 8 |
发芽数(颗) | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(注: )