题目内容
4.“整数对”按如下规律排成一列:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),…,则第50个数对是(5,6).分析 由已知可知排列规律是(m,n)(m,n∈N*),且m+n的和从2开始,依次是3,4…增大,其中m也是依次增大,按规律分组:第一组(1,1);第二组(1,2),(2,1);第三组(1,3),(2,2),(3,1);…求前10组有序实数对个数,第50项应在第10组中的第五个,分析“整数对”的分布规律,然后归纳推断出第50个数对.
解答 解:由已知可知:“整数对”(m,n)(m,n∈N*),m+n的值从2开始,依次是3,4…增大,其中m也是依次增大,
而m+n=2只有一个(1,1);
m+n=3有两个(1,2),(2,1);
m+n=4有3个(1,3),(2,2),(3,1);
…
m+n=11有10个(1,10),(2,9),…,(10,1);
其上面共有1+2+…+10=$\frac{11(1+10)}{2}$=55个;
所以第50个“整数对”是(5,6),
故答案为:(5,6).
点评 本题考查的知识点是归纳推理,归纳推理的一般步骤是:(1)通过观察个别情况发现某些相同性质;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想),属于基础题.
练习册系列答案
相关题目
15.已知数列{an}的通项公式为an=2n+3,则( )
A. | {an}是公比为2的等比数列 | B. | {an}是公比为3的等比数列 | ||
C. | {an}是公差为2的等差数列 | D. | {an}是公差为3的等差数列 |
12.某产品的广告费用x(万元)与销售额y(万元)的统计数据如表,根据右表可得回归方程$\hat y=\hat bx+\hat a$中的$\hat a=0$,据此模型预报广告费用为6万元时销售额为( )
x | 4 | 2 | 3 | 5 |
y | 38 | 20 | 31 | 51 |
A. | 50 | B. | 60 | C. | 63 | D. | 59 |
19.某超市从2014年甲、乙两种酸奶的日销售量(单位:箱)的数据中分别随机抽取100个,整理得到数据分组及频率分布表和频率分布直方图:
(Ⅰ)写出频率分布直方图中的a的值,并作出甲种酸奶日销售量的频率分布直方图;
答:a=0.015;
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为s12,s22,试比较s12与s22的大小.(只需写出结论).
答:s12<s22.
分组 (日销售量) | 频率 (甲种酸奶) |
[0,10] | 0.10 |
(10,20] | 0.20 |
(20,30] | 0.30 |
(30,40] | 0.25 |
(40,50] | 0.15 |
答:a=0.015;
(Ⅱ)记甲种酸奶与乙种酸奶日销售量(单位:箱)的方差分别为s12,s22,试比较s12与s22的大小.(只需写出结论).
答:s12<s22.
9.下列函数中,在其定义域内既是奇函数又是增函数的是( )
A. | y=-x | B. | y=$\frac{1}{x}$ | C. | y=3x | D. | y=ex-e-x |
16.若圆C的半径为1,其圆心C与点(1,0)关于直线x+y=0对称,则圆C的标准方程为( )
A. | x2+(y-1)2=1 | B. | x2+(y+1)2=1 | C. | (x-1)2+y2=1 | D. | (x+1)2+y2=1 |