题目内容

12.某产品的广告费用x(万元)与销售额y(万元)的统计数据如表,根据右表可得回归方程$\hat y=\hat bx+\hat a$中的$\hat a=0$,据此模型预报广告费用为6万元时销售额为(  )
x4235
y38203151
A.50B.60C.63D.59

分析 求出$\overline{x}$、$\overline{y}$,由回归方程$\hat y=\hat bx+\hat a$过点($\overline{x}$,$\overline{y}$),求出$\stackrel{∧}{b}$,再求x=6时$\stackrel{∧}{y}$的值.

解答 解:∵$\overline{x}$=$\frac{4+2+3+5}{4}$=3.5,
$\overline{y}$=$\frac{38+20+31+51}{4}$=35,
且回归方程$\hat y=\hat bx+\hat a$中的$\hat a=0$,过点($\overline{x}$,$\overline{y}$);
∴$\stackrel{∧}{b}$=$\frac{\overline{y}}{\overline{x}}$=$\frac{35}{3.5}$=10,
∴$\stackrel{∧}{y}$=10x;
∴当广告费用为x=6万元时,
销售额为$\stackrel{∧}{y}$=10×6=60(万元).
故选:B.

点评 本题考查了线性回归直线的应用问题,解题时应熟记回归直线过样本的中心点,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网