题目内容

17.已知函数f(x)=log2(1-x),g(x)=log2(x+1),设F(x)=f(x)-g(x)
(1)判断函数F(x)的奇偶性;
(2)证明函数F(x)是减函数.

分析 (1)求出F(x)=$lo{g}_{2}\frac{1-x}{x+1}$,可求出该函数的定义域为(-1,1),然后可以求出F(-x)=-F(x),这便得出该函数为奇函数;
(2)可通过减函数的定义证明,设x1,x2∈(-1,1),且x1<x2,然后作差,证明F(x1)>F(x2)即可.

解答 解:(1)F(x)=$lo{g}_{2}(1-x)-lo{g}_{2}(x+1)=lo{g}_{2}\frac{1-x}{1+x}$;
解$\left\{\begin{array}{l}{1-x>0}\\{x+1>0}\end{array}\right.$得,-1<x<1;
∴F(x)的定义域为(-1,1);
F(-x)=$lo{g}_{2}\frac{1+x}{1-x}=lo{g}_{2}(\frac{1-x}{1+x})^{-1}$=-F(x);
∴F(x)为奇函数;
(2)证明:设x1,x2∈(-1,1),且x1<x2,则:
F(x1)-F(x2)=$lo{g}_{2}\frac{1-{x}_{1}}{1+{x}_{1}}-lo{g}_{2}\frac{1-{x}_{2}}{1+{x}_{2}}$=$lo{g}_{2}\frac{(1-{x}_{1})(1+{x}_{2})}{(1-{x}_{2})(1+{x}_{1})}$;
∵-1<x1<x2<1;
∴1-x1>1-x2>0,1+x2>1+x1>0;
∴$\frac{1-{x}_{1}}{1-{x}_{2}}>1,\frac{1+{x}_{2}}{1+{x}_{1}}>1$;
∴$\frac{(1-{x}_{1})(1+{x}_{2})}{(1-{x}_{2})(1+{x}_{1})}>1$;
∴F(x1)-F(x2)>0;
即F(x1)>F(x2);
∴F(x)在定义域上是减函数.

点评 考查对数的真数需大于0,函数定义域的概念,奇函数的定义及判断方法,对数的运算,以及根据减函数的定义证明函数为减函数的方法.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网