题目内容
2.已知数列{an}满足:a1=$\frac{1}{2}$,an+1=$\frac{1}{2-{a}_{n}}$,且an+bn=1.(1)求a2,a3,a4;
(2)求数列{an}的通项公式;
(3)数列{an}的前n项和Sn=b1b2+b2b3+…+bnbn+1,证明:Sn<$\frac{1}{2}$.
分析 (1)利用已知递推式,依次代入即可.
(2)构造数列{$\frac{1}{{a}_{n}-1}$},证明数列{$\frac{1}{{a}_{n}-1}$}是等差数列即可得到结论.
(3)利用“裂项求和”即可得出.
解答 解:(1)∵a1=$\frac{1}{2}$,an+1=$\frac{1}{2-{a}_{n}}$,
∴a2=$\frac{1}{2-\frac{1}{2}}=\frac{1}{\frac{3}{2}}$=$\frac{2}{3}$,a3=$\frac{1}{2-\frac{2}{3}}=\frac{1}{\frac{4}{3}}$=$\frac{3}{4}$,a4=$\frac{1}{2-\frac{3}{4}}=\frac{1}{\frac{5}{4}}$=$\frac{4}{5}$.
(2)∵an+1=$\frac{1}{2-{a}_{n}}$(n∈N*),
∴$\frac{1}{{a}_{n+1}-1}-\frac{1}{{a}_{n}-1}$=$\frac{1}{\frac{1}{2-{a}_{n}}-1}-\frac{1}{{a}_{n}-1}$=$\frac{2-{a}_{n}}{{a}_{n}-1}-\frac{1}{{a}_{n}-1}$=-1,
又$\frac{1}{{a}_{1}-1}=\frac{1}{\frac{1}{2}-1}=\frac{1}{-\frac{1}{2}}=-2$,
∴数列{$\frac{1}{{a}_{n}-1}$}是首项为-2,公差为-1的等差数列.
∴$\frac{1}{{a}_{n}-1}$=-2-(n-1)=-n-1,
则an-1=-$\frac{1}{n+1}$,
则an=1-$\frac{1}{n+1}$=$\frac{n}{n+1}$,(n∈N*).
(3)(Ⅱ)∵bn+an=l(n∈N*),
∴bn=1-an=$\frac{1}{n+1}$,
∴bnbn+1=$\frac{1}{n+1}$•$\frac{1}{n+2}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
∴S=b1b2+b2b3+…+bnbn+1=($\frac{1}{2}$$-\frac{1}{3}$)+($\frac{1}{3}-\frac{1}{4}$)+$(\frac{1}{4}-\frac{1}{5})+(\frac{1}{5}-\frac{1}{6})$+…+($\frac{1}{n+1}$-$\frac{1}{n+2}$)=$\frac{1}{2}$-$\frac{1}{n+2}$<$\frac{1}{2}$.
点评 本题考查了递推式的意义、等差数列的定义及其通项公式、“裂项求和”和“作差法”等基础知识与基本技能方法,考查了推理能力和计算能力,属于难题.
A. | 7 | B. | 64 | C. | 12 | D. | 81 |