题目内容
【题目】已知抛物线,过的直线与抛物线C交于两点,点A在第一象限,抛物线C在两点处的切线相互垂直.
(1)求抛物线C的标准方程;
(2)若点P为抛物线C上异于的点,直线均不与轴平行,且直线AP和BP交抛物线C的准线分别于两点,.
(i)求直线的斜率;
(ⅱ)求的最小值.
【答案】(1);(2)(i);(ⅱ)4.
【解析】
(1)利用导数的几何意义分别求得处切线的斜率,再根据斜率相乘为,可得的值,即可得答案;
(2)(i)根据可得点横坐标的关系,再结合韦达定理,可求得斜率;
(ii)由(i)易知,设,则,再分别求出点的横坐标用表示,利用换元法可求得的最值.
(1)设.
抛物线C的方程可化为.
抛物线C在两点处的切线的斜率分别为.
由题可知直线l的斜率存在,故可设直线1的方程为,
联立,消去y可得,
.
,解得.
∴抛物线C的标准方程为;
(2)(i)由(1)可得
由,可得,
又点A在第一象限,解得.
∴直线AB的斜率为;
(ii)由(i)易知.
设,则.
由题可知,故且.
∴直线AP的斜率,同理可得.
∴直线,当时,.
直线,当时,.
.
令,
当且仅当,即,也即或时,取得最小值4.
【题目】如图,在四棱锥P-ABCD中,已知四边形ABCD是边长为2的正方形,平面ABCD,E是棱PB的中点,且过AE和AD的平面与棱PC交于点F.
(1)求证:;
(2)若平面平面PBC,求线段PA的长.
【题目】如图,已知点为抛物线,点为焦点,过点的直线交抛物线于两点,点在抛物线上,使得的重心在轴上,直线交轴于点,且在点右侧.记的面积为.
(1)求的值及抛物线的标准方程;
(2)求的最小值及此时点的坐标.
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量y(g)与尺寸x(mm)之间近似满足关系式c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸 | 38 | 48 | 58 | 68 | 78 | 88 |
质量 | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(1)现从抽取的6件合格产品中再任选3件,记ξ为取到优等品的件数,试求随机变量ξ的分布列和期望;
(2)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
根据所给统计量,求y关于x的回归方程.
附:对于样本,其回归直线的斜率和截距的最小二乘估计公式分别为:.