题目内容
(1)判断函数奇偶性,并给出证明;(2)求函数的值域。
(1)奇函数(2)
解析
(本小题满分12分)已知函数,(1)若,求的值;(2)若为偶函数,求。(3)证明:函数在区间上是增函数。
(12分)已知函数。(1)求m的值;(2)当时的值域是,求实数a与r的值。
(本小题满分14分) 已知,函数.(1)求函数的单调递减区间;(2)若函数在区间上有极值,求的取值范围;
(本小题满分14分)已知函数,(1)若函数在上是减函数,求实数的取值范围;(2)令,是否存在实数,当(是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由。K
(12分)已知定义在区间(-1,1)上的函数f(x)既是奇函数又是减函数,G(x)=f(1-x)+f(1-),求G(x)<0的解
(12分)设的定义域分别为A和B,若成立的必要不充分条件,求a的取值范围。
已知函数的定义域为,对任意实数,都有成立,且当时,有,试判断函数的奇偶性和单调性,并证明你的结论
若f(x)=是奇函数,且f(2)=. (1)、求实数p、q的值;(2)判断f(x)在(-∝,-1)的单调性,并加以证明。