题目内容

【题目】某商人投资81万元建一间工作室,第一年装修费为1万元,以后每年增加2万元,把工作室出租,每年收入租金30万元.

(1)若扣除投资和各种装修费,则从第几年开始获取纯利润?

(2)若干年后该商人为了投资其他项目,对该工作室有两种处理方案:年平均利润最大时,以46万元出售该工作室;纯利润总和最大时,以10万元出售该工作室.问该商人会选择哪种方案?

【答案】1)从第4年开始获取纯利润。

2)两种方案获利一样多,而方案(1)时间比较短,所以选择方案(1)。

【解析】试题分析:(1)设第n年获取利润为y万元,n年共收入租金30n万元.付出装修费共,付出投资81万元,由此可知利润y=30n-81+n2),由y0能求出从第几年开始获取纯利润.

2纯利润总和最大时,以10万元出售,利用二次函数的性质求出最大利润,方案利用基本不等式进行求解,当两种方案获利一样多,就看时间哪个方案短就选择哪个..

1)设第年获取利润为万元。………………1

年共收租金30万元,付出装修费构成一个以1为首项,2为公差的等差数列,

…………………2

因此利润……………4

解得……………5

所以从第4年开始获取纯利润。………………6

2)年平均利润………………8

………………9

(当且仅当)所以9年后共获利润:154万元。……………10

利润

所以15年后共获利润:144+10=154万元……………………11

两种方案获利一样多,而方案(1)时间比较短,所以选择方案(1)。…………………12

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网