题目内容
【题目】已知函数, ,(其中, 为自然对数的底数, ……).
(1)令,若对任意的恒成立,求实数的值;
(2)在(1)的条件下,设为整数,且对于任意正整数, ,求的最小值.
【答案】(1);(2).
【解析】试题分析:(1)由对任意的恒成立,即,利用导数讨论函数的单调性,求出最小值,即可得到实数的值;(2)由(1)知,即,
令(, )则,所以,令,求和后利用放缩法可得,从而可得的最小值.
所以,.
试题解析:(1)因为
所以,
由对任意的恒成立,即,
由,
(i)当时, , 的单调递增区间为,
所以时, ,
所以不满足题意.
(ii)当时,由,得
时, , 时, ,
所以在区间上单调递减,在区间上单调递增,
所以的最小值为 .
设,所以,①
因为
令得,
所以在区间上单调递增,在区间上单调递减,
所以,②
由①②得,则.
(2)由(1)知,即,
令(, )则,
所以,
所以
,
所以,
又,
所以的最小值为.
练习册系列答案
相关题目