题目内容

【题目】已知函数.

1)若,求的零点个数;

2)若,证明:.

【答案】(1)(2)见解析

【解析】

1)将a的值代入f(x),再求导得,在定义域内讨论函数单调性,再由函数的最小值正负来判断它的零点个数;(2)把a的值代入f(x),将整理化简为,即证明该不等式在上恒成立,构造新的函数,利用导数可知其在定义域上的最小值,构造函数,由导数可知其定义域上的最大值,二者比较大小,即得证。

1)解:因为,所以.

,得;令,得

所以上单调递增,在上单调递减,

所以的零点个数为1.

2)证明:因为,从而.

又因为

所以要证恒成立,

即证恒成立,

即证恒成立.

,则

时,单调递增;

时,单调递减.

所以.

,则

时,单调递增;

时,单调递减.

所以,所以

所以恒成立,

.

练习册系列答案
相关题目

【题目】已知.

(Ⅰ)若,求的极值;

(Ⅱ)若函数的两个零点为,记,证明:

【答案】(Ⅰ)极大值为无极小值;证明见解析.

【解析】分析:(Ⅰ)先判断函数上的单调性,然后可得当时,有极大值,无极小值.不妨设由题意可得,又由条件得,构造,令,则,利用导数可得故得所以

详解:(Ⅰ)

且当时,,即上单调递增,

时,,即上单调递减,

∴当时,有极大值,且无极小值.

(Ⅱ)函数的两个零点为,不妨设

,则

上单调递减,

点睛:(1)研究方程根的情况可以通过导数研究函数的单调性、最大(小)值、函数的变化趋势等根据题目要求画出函数图象的大体图象然后通过数形结合的思想去分析问题可以使得问题的求解有一个清晰、直观的整体展现

(2)证明不等式时常采取构造函数的方法,然后通过判断函数的单调性借助函数的最值进行证明

型】解答
束】
22

【题目】在平面直角坐标系中,直线的参数方程为为参数,.以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,已知曲线的极坐标方程为:

(Ⅰ)求直线的普通方程与曲线的直角坐标方程;

Ⅱ)设直线与曲线交于不同的两点的值.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网