题目内容

【题目】在平面直角坐标系中,曲线的参数方程为为参数),曲线的参数方程为为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系.

(1)求曲线和曲线的极坐标方程;

(2)已知射线),将射线顺时针方向旋转得到,且射线与曲线交于两点,射线与曲线交于两点,求的最大值.

【答案】(1),;(2)1.

【解析】分析(1)由曲线参数方程消去参数可得其直角坐标方程,从而能求出曲线极坐标方程,由曲线参数方程消去参数可得其直角坐标方程,从而能求出曲线极坐标方程;(2)设点的极坐标为,即,设点的极坐标为,即 能求出取最大值.

详解(1)曲线直角坐标方程为,所以极坐标方程为

曲线直角坐标方程,所以极坐标方程为

(2)设点的极坐标为,即,设点的极坐标为,即

,即时,取最大值1.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网