题目内容
【题目】袋子里有完全相同的3只红球和4只黑球,今从袋子里随机取球.
(Ⅰ)若有放回地取3次,每次取一个球,求取出2个红球1个黑球的概率;
(Ⅱ)若无放回地取3次,每次取一个球,若取出每只红球得2分,取出每只黑球得1分,求得分的分布列和数学期望.
【答案】(1)108:343
(2)
3 | 4 | 5 | 6 | |
【解析】试题分析:(1)由题可先算出取出红球和黑球的概率,再求取3次2个红球1个黑球的概率,可知为独立重复试验(有放回),运用独立重复试验的概率公式可求;(注意规范解题格式)
(2)由题意(无放回),先分析出的可能取值,再分别求出对应的概率,可列出分布列(为超几何分布),代入期望公式可得。
试题解析:(1)从袋子里有放回地取3次球,相当于做了3次独立重复试验,每次试验取出红球的概率为,取出黑球的概率为,设事件“取出2个红球1个黑球”,则
(2)的取值有四个:3、4、5、6,分布列为:
,,
,.
3 | 4 | 5 | 6 | |
从而得分的数学期望.
练习册系列答案
相关题目