题目内容
【题目】设函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值.
(1)求a,b的值;
(2)求曲线f(x)在x=0处的切线方程.
【答案】
(1)解:∵函数f(x)=2x3+3ax2+3bx+8c,
∴f′(x)=6x2+6ax+3b,
∵函数f(x)在x=1及x=2取得极值,∴f′(1)=0,f′(2)=0.
即 ,
解得a=﹣3,b=4;
(2)解:由(1)得f(x)=2x3﹣9x2+12x+8,f′(x)=6x2﹣18x+12,
∴f(0)=0,f′(0)=12.∴切线的斜率k=12.切点为(0,8)
由直线方程的点斜式得切线方程为:y﹣8=12x,即12x﹣y+8=0
【解析】(1)由已知得f′(x)=6x2+6ax+3b,函数f(x)=2x3+3ax2+3bx+8在x=1及x=2时取得极值,可得 ,由此能求出a,b的值.(2)确定切线的斜率,切点坐标,即可求曲线f(x)在x=0处的切线方程.
【考点精析】根据题目的已知条件,利用基本求导法则和函数的极值与导数的相关知识可以得到问题的答案,需要掌握若两个函数可导,则它们和、差、积、商必可导;若两个函数均不可导,则它们的和、差、积、商不一定不可导;求函数的极值的方法是:(1)如果在附近的左侧,右侧,那么是极大值(2)如果在附近的左侧,右侧,那么是极小值.
【题目】某市司法部门为了宣传《宪法》举办法律知识问答活动,随机对该市18~68岁的人群抽取一个容量为n的样本,并将样本数据分成五组:[18,28),[28,38),[38,48),[48,58),[58,68),再将其按从左到右的顺序分别编号为第1组,第2组,…,第5组,绘制了样本的频率分布直方图;并对回答问题情况进行统计后,结果如下表所示.
组号 | 分组 | 回答正确的人数 | 回答正确的人数占本组的比例 |
第1组 | [18,28) | 5 | 0.5 |
第2组 | [28,38) | 18 | a |
第3组 | [38,48) | 27 | 0.9 |
第4组 | [48,58) | x | 0.36 |
第5组 | [58,68) | 3 | 0.2 |
(1)分别求出a,x的值;
(2)从第2,3,4组回答正确的人中用分层抽样方法抽取6人,则第2,3,4组每组应各抽取多少人?
(3)在(2)的前提下,决定在所抽取的6人中随机抽取2人颁发幸运奖,求:所抽取的人中第2组至少有1人获得幸运奖的概率.