题目内容

【题目】椭圆的中心在原点,焦点分别在轴与轴上,它们有相同的离心率,并且的短轴为的长轴,的四个焦点构成的四边形面积是.

(1)求椭圆的方程;

(2)设是椭圆上非顶点的动点,与椭圆长轴两个顶点的连线分别与椭圆交于点.

(i)求证:直线斜率之积为常数;

(ii)直线与直线的斜率之积是否为常数?若是,求出该值;若不是,说明理由.

【答案】(1).(2)(i) 见解析(ii).

【解析】试题分析:(1)椭圆离心率,又,所以,设,则根据题中条件可设,于是根据椭圆的对称性可知,四个焦点构成的四边形为菱形,面积,解得,可以得到椭圆;(2)(i)本问考查圆锥曲线中的定点、定值问题,分析题意,设,而,所以,于是,又因为,代入上式易求;(ii)根据(i)问,可先证明为定值,再证明为定值,于是可以得到为定值,由于,所以可以得为定值.

试题解析:(1)依题意,设,由对称性,四个焦点构成的四边形为菱形,且面积,解得:.

所以椭圆.

(2)(i)设,则.

.

所以:.

直线斜率之积为常数.

(ii)设,则.

所以:,同理:

所以:,由,结合(i)有

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网