题目内容
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在30分以下的学生后,共有男生300名,女生200名.现采用分层抽样的方法,从中抽取了100名学生,按性别分为两组,并将两组学生成绩分为6组,得到如下所示频数分布表.
分数段 | [40,50) | [50,60) | [60,70) | [70,80) | [80,90) | [90,100] |
男 | 3 | 9 | 18 | 15 | 6 | 9 |
女 | 6 | 4 | 5 | 10 | 13 | 2 |
(I)估计男、女生各自的平均分(同一组数据用该组区间中点值作代表),从计算结果看,能否判断数学成绩与性别有关;
(II)规定80分以上为优分(含80分),请你根据已知条件完成2×2列联表,并判断是否有90%以上的把握认为“数学成绩与性别有关”. (,其中)
【答案】(1)不能判断(2)没有90%以上的把握
【解析】试题分析: 利用同一组数据用该区间中点值作代表,计算男女生各自的成绩平均数,即可得出结论。
根据所给的条件写出列联表,根据列联表做出观测值,把观测值同临界值进行比较,得到结论。
解析:(I) 男=45×0.05+55×0.15+65×0.3+75×0.25+85×0.1+95×0.15=71.5,
女=45×0.15+55×0.1+65×0.125+75×0.25+85×0.325+95×0.05=71.5,
从男、女生各自的平均分来看,并不能判断数学成绩与性别有关.
(II)由频数分布表可知:在抽取的100名学生中,“男生组”中的优分有15人,“女生组”中的优分有15人,据此可得2×2列联表如下:
优分 | 非优分 | 合计 | |
男生 | 15 | 45 | 60 |
女生 | 15 | 25 | 40 |
合计 | 30 | 70 | 100 |
可得≈1.789,
因为1.79<2.706,所以没有90%以上的把握认为“数学成绩与性别有关”.