题目内容
7.已知F是抛物线C:y2=4x的焦点,过点F的直线交抛物线C与A、B两点,且|AB|=6,则弦AB中点的横坐标为( )A. | 1 | B. | 2 | C. | 4 | D. | 无法确定 |
分析 先根据抛物线方程求出p的值,再由抛物线的性质可得到答案.
解答 解:∵抛物线y2=4x,∴P=2,
设经过点F的直线与抛物线相交于A、B两点,
其横坐标分别为x1,x2,利用抛物线定义,
AB中点横坐标为x0=$\frac{1}{2}$(x1+x2)=$\frac{1}{2}$(|AB|-P)=$\frac{1}{2}$(6-2)=2.
故选:B.
点评 本题主要考查了抛物线的性质.属中档题.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目
18.定义运算$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,函数$f(x)=|{\begin{array}{l}{2sinx}&m\\{cos2x}&{cosx}\end{array}}|$的图象关于直线x=$\frac{π}{8}$对称,则f(x)的单调递增区间为( )
A. | $[kπ-\frac{3π}{8},kπ+\frac{π}{8}],(k∈Z)$ | B. | $[kπ-\frac{π}{8},kπ+\frac{3π}{8}],(k∈Z)$ | ||
C. | $[2kπ-\frac{3π}{4},2kπ+\frac{π}{4}],(k∈Z)$ | D. | $[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}],(k∈Z)$ |