题目内容

在矩形ABCD中,|AB|=2,|AD|=2,E、F、G、H分别为矩形四条边的中点,以HF、GE所在直线分别为x,y轴建立直角坐标系(如图所示).若R、R′分别在线段0F、CF上,且.

(Ⅰ)求证:直线ER与GR′的交点P在椭圆+=1上;
(Ⅱ)若M、N为椭圆上的两点,且直线GM与直线GN的斜率之积为,求证:直线MN过定点;并求△GMN面积的最大值.
详见解析;直线MN过定点(0,-3),△GMN面积的最大值.

试题分析:先计算出E、R、G、R′各点坐标,得出直线ER与GR′的方程,解得其交点坐标 代入满足椭圆方程即可; 先讨论直线MN的斜率不存在时的情况;再讨论斜率存在时,用斜截式设出直线MN方程.与椭圆方程联立,用“设而不求”的方法通过韦达定理得出b为定值-3或1,又当b=1时,直线GM与直线GN的斜率之积为0,所以舍去.从而证明出MN过定点(0,-3).最后算出点到直线的距离及MN的距离,得出△GMN面积是一个关于的代数式,由知:,用换元法利用基本不等式求出△GMN面积的最大值是.
试题解析:(Ⅰ)∵,∴              1分
  则直线的方程为       ①     2分

 则直线的方程为          ②
由①②得

∴直线的交点在椭圆上              4分
(Ⅱ)①当直线的斜率不存在时,设
不妨取 ∴ ,不合题意     5分
②当直线的斜率存在时,设 

联立方程 得


      7分


代入上式得
解得(舍)
∴直线过定点                      10分
,点到直线的距离为

知:,令 即
 当且仅当时,  13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网