题目内容
(本小题满分14分)
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求数列{Sn}的通项公式;
(2)设Sn=,bn=f()+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn<.
设数列{an}的前n项和为Sn,已知a1=1,且an+2SnSn-1=0(n≥2),
(1)求数列{Sn}的通项公式;
(2)设Sn=,bn=f()+1.记Pn=S1S2+S2S3+…+SnSn+1,Tn=b1b2+b2b3+…+bnbn+1,试求Tn,并证明Pn<.
(1)解:∵an+2SnSn-1=0(n≥2),
∴Sn-Sn-1+2SnSn-1=0. ---------3分
∴-=2.又∵a1=1 , ---------------5分
∴Sn=(n∈N+). ---------------7分
(2)证明:∵Sn=,∴f(n)=2n-1.--------------------------8分
∴bn=2()-1+1=()n-1.---------------------------------------9分
Tn=()0·()1+()1·()2+…+()n-1·()n
=()1+()3+()5+…+()2n-1
=[1-()n].-------------------------------------------------------11分
∴Sn-Sn-1+2SnSn-1=0. ---------3分
∴-=2.又∵a1=1 , ---------------5分
∴Sn=(n∈N+). ---------------7分
(2)证明:∵Sn=,∴f(n)=2n-1.--------------------------8分
∴bn=2()-1+1=()n-1.---------------------------------------9分
Tn=()0·()1+()1·()2+…+()n-1·()n
=()1+()3+()5+…+()2n-1
=[1-()n].-------------------------------------------------------11分
略
练习册系列答案
相关题目