题目内容
【题目】已知函数,.
(Ⅰ)若曲线与曲线在公共点处有共同的切线,求实数的值;
(Ⅱ)在(Ⅰ)的条件下,试问函数是否有零点?如果有,求出该零点;若没有,请说明理由.
【答案】(I);(II)无零点.
【解析】试题分析:(Ⅰ)设曲线与曲线公共点为则由,,即可求的值;
(Ⅱ)函数是否有零点,转化为函数与函数在区间是否有交点,求导根据函数单调性可知最小值为,最大值为,从而无零点
试题解析:
(Ⅰ)函数的定义域为,,
设曲线与曲线公共点为
由于在公共点处有共同的切线,所以,解得,.
由可得.
联立解得.
(Ⅱ)函数是否有零点,
转化为函数与函数在区间是否有交点,
,可得,
令,解得,此时函数单调递增;
令,解得,此时函数单调递减.
∴当时,函数取得极小值即最小值,.
可得,
令,解得,此时函数单调递增;
令,解得,此时函数单调递减.
∴当时,函数取得极大值即最大值,.
因此两个函数无交点.即函数无零点.
练习册系列答案
相关题目