题目内容

【题目】已知函数,其中

)函数的图象能否与轴相切?若能,求出实数a,若不能,请说明理由;

)求最大的整数,使得对任意,不等式

恒成立.

【答案】(1)不能(2)

【解析】试题分析

(Ⅰ)假设函数的图象能与轴相切设切点为根据导数的几何意义得到关于的方程,然后判断此方程是否有解即可得到结论.(Ⅱ)将不等式变形为,设则问题等价于对任意恒成立故只需函数在R上单调递增因此在R上恒成立即可,由可得

,即为成立的必要条件,然后再证即可得到结论

试题解析

(Ⅰ)∵

假设函数的图象与轴相切于点

则有

显然代入方程中可得

方程无解.

故无论a取何值,函数的图象都不能与轴相切.

(Ⅱ)由题意可得原不等式可化为

故不等式在R上恒成立.

,则上式等价于

要使对任意恒成立,

只需函数上单调递增,

上恒成立.

解得

上恒成立的必要条件是:

下面证明:当时,恒成立.

,则

时,单调递减;当时,单调递增

,即

则当时,

时,

恒成立.

所以实数的最大整数值为3.

练习册系列答案
相关题目

【题目】在等差数列中,已知公差 ,且 成等比数列.

(1)求数列的通项公式

(2)求.

【答案】(1);(2)100

【解析】试题分析:(1)根据题意 成等比数列得求出d即可得通项公式;(2)求项的绝对前n项和,首先分清数列有多少项正数项和负数项,然后正数项绝对值数值不变,负数项绝对值要变号,从而得,得,由,得,∴ 计算 即可得出结论

解析:(1)由题意可得,则

,即

化简得,解得(舍去).

.

(2)由(1)得时,

,得,由,得

.

.

点睛:对于数列第一问首先要熟悉等差和等比通项公式及其性质即可轻松解决,对于第二问前n项的绝对值的和问题,首先要找到数列由多少正数项和负数项,进而找到绝对值所影响的项,然后在求解即可得结论

型】解答
束】
18

【题目】甲、乙两家销售公司拟各招聘一名产品推销员,日工资方案如下: 甲公司规定底薪80元,每销售一件产品提成1元; 乙公司规定底薪120元,日销售量不超过45件没有提成,超过45件的部分每件提成8元.

(I)请将两家公司各一名推销员的日工资 (单位: 元) 分别表示为日销售件数的函数关系式;

(II)从两家公司各随机选取一名推销员,对他们过去100天的销售情况进行统计,得到如下条形图。若记甲公司该推销员的日工资为,乙公司该推销员的日工资为 (单位: 元),将该频率视为概率,请回答下面问题:

某大学毕业生拟到两家公司中的一家应聘推销员工作,如果仅从日均收入的角度考虑,请你利用所学的统计学知识为他作出选择,并说明理由.

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网