题目内容
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是矩形,侧棱PD⊥底面ABCD,PD=DC,点E是PC的中点,作EF⊥PB交PB于点F.
(1)求证:PA∥平面BDE;
(2)求证:PB⊥平面DEF.
【答案】
(1)证明:连结AC,设AC交BD于O,连结EO,
∵底面ABCD中矩形,∴点O是AC的中点,
又∵点E是PC的中点,∴PA∥EO,
∵EO平面BDE,PA平面BDE,
∴PA∥平面EO
(2)证明:PD⊥底面ABCD,BC底面ABCD,
∴PD⊥BC,
∵底面ABCD中矩形,∴CD⊥BC,
∵PD∩CD=D,∴BC⊥平面PDC,
∵DE平面PDC,∴BC⊥DE,
∵PD=DC,E是PC的中点,∴DE⊥PC,
∵PC∩BC=C,∴DE⊥PB,
又∵EF⊥PB,DE∩EF=E,DE平面DEF,EF平面DEF,
∴PB⊥平面DEF.
【解析】(1)连结AC,设AC交BD于O,连结EO,则PA∥EO,由此能证明PA∥平面EO.(2)由已知得PD⊥BC,CD⊥BC,从而BC⊥平面PDC,进而BC⊥DE,再由DE⊥PC,DE⊥PB,由此能证明PB⊥平面DEF.
练习册系列答案
相关题目
【题目】通过随机询问110名性别不同的中学生是否爱好运动,得到如下的列联表:
男 | 女 | 总计 | |
爱好 | 40 | 20 | 60 |
不爱好 | 20 | 30 | 50 |
总计 | 60 | 50 | 110 |
由K2= 得,K2= ≈7.8
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
参照附表,得到的正确结论是( )
A.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别有关”
B.有99%以上的把握认为“爱好运动与性别有关”
C.在犯错误的概率不超过0.1%的前提下,认为“爱好运动与性别无关”
D.有99%以上的把握认为“爱好运动与性别无关”