题目内容

【题目】如图,在三棱锥中,已知都是边长为的等边三角形,中点,且平面为线段上一动点,记

(1)当时,求异面直线所成角的余弦值;

(2)当与平面所成角的正弦值为时,求的值

【答案】(1)(2)

【解析】分析:(1)建立空间直角坐标系,设立各点坐标,根据向量数量积求向量夹角,最后根据线线角与向量夹角相等或互补得结果,(2)建立空间直角坐标系,设立各点坐标,利用方程组求平面的一个法向量,再根据向量数量积求向量夹角,最后根据线面角与向量夹角互余列等量关系,解得结果,

详解:连接CE, 以分别为轴,

建立如图空间直角坐标系,

因为F为线段AB上一动点,且

, 所以

(1)当时,

所以

(2)

设平面的一个法向量为=

, ,化简得,取

与平面所成角为

.

解得(舍去),所以

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网