题目内容

17.已知圆O:x2+y2=1,点M(x0,y0)是直线x-y+2=0上一点,若圆O上存在一点N,使得$∠NMO=\frac{π}{6}$,则x0的取值范围是[-2,0].

分析 过M作⊙O切线交⊙C于R,则∠OMR≥∠OMN,由题意可得∠OMR≥$\frac{π}{6}$,|OM|≤2.再根据M(x0,2+x0),|OM|2=x02+y02=2x02 +4x0+4,求得x0的取值范围.

解答 解:过M作⊙O切线交⊙C于R,根据圆的切线性质,
有∠OMR≥∠OMN.
反过来,如果∠OMR≥$\frac{π}{6}$,则⊙O上存在一点N使得∠OMN=$\frac{π}{6}$.
∴若圆O上存在点N,使∠OMN=$\frac{π}{6}$,则∠OMR≥$\frac{π}{6}$.
∵|OR|=1,OR⊥MR,∴|OM|≤2.
又∵M(x0,2+x0),
|OM|2=x02+y02=x02+(2+x02=2x02 +4x0+4,
∴2x02+4x0+4≤4,解得,-2≤x0≤0.
∴x0的取值范围是[-2,0],
故答案为:[-2,0].

点评 本题主要考查了直线与圆相切时切线的性质,以及一元二次不等式的解法,综合考察了学生的转化能力,计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网