题目内容
【题目】某校随机抽取100名学生调查寒假期间学生平均每天的学习时间,被调查的学生每天用于学习的时间介于1小时和11小时之间,按学生的学习时间分成5组:第一组,第二组,第三组,第四组,第五组,绘制成如图所示的频率分布直方图.
(1)求学习时间在的学生人数;
(2)现要从第三组、第四组中用分层抽样的方法抽取6人,从这6人中随机抽取2人交流学习心得,求这2人中至少有1人学习时间在第四组的概率.
【答案】(1)(2).
【解析】试题分析:(1)由频率分布图求出,由此能求出学习时间在的学生人数.
(2)第三组的学生人数为40人,利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为:第三组的人数为4人,第四组的人数为2人,由此能求出这2人中至少有1人的学习时间在第四组的概率.
试题解析:(1)由频率分布直方图可知: ,
解得,
所以学习时间在的学生人数为
(2)第三组的学生人数为,第三四组共有人,利用分层抽样在60名学生中抽取6名学生,每组抽取的人数分别为
第三组的人数为为人,第四组人数为人
设第三组的四位同学为,第四组的2为同学为
则从这六位同学中抽取2位同学有
共15种可能
其中2人学习时间都不在第四组的有共6种可能,
所以这2人中至少有1人的学习时间在第四组的概率为
【题目】某中学拟在高一下学期开设游泳选修课,为了了解高一学生喜欢游泳是否与性别有关,该学校对100名高一新生进行了问卷调查,得到如下列联表:
喜欢游泳 | 不喜欢游泳 | 合计 | |
男生 | 10 | ||
女生 | 20 | ||
合计 |
已知在这100人中随机抽取1人抽到喜欢游泳的学生的概率为.
(1)请将上述列联表补充完整;
(2)并判断是否有99.9%的把握认为喜欢游泳与性别有关?并说明你的理由;
(3)已知在被调查的学生中有5名来自甲班,其中3名喜欢游泳,现从这5名学生中随机抽取2人,求恰好有1人喜欢游泳的概率.
下面的临界值表仅供参考:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中)