题目内容
【题目】函数f(x)=ax3+bx+ +2,满足f(﹣3)=﹣2015,则f(3)的值为 .
【答案】2019
【解析】解:函数f(x)=ax3+bx+ +2,
y=ax3+bx+ 是奇函数,f(﹣3)=﹣2015,
可得﹣a20153﹣2015b﹣ +2=﹣2015,
a20153+2015b+ =2017.
则f(3)=a20153+2015b+ +2=2019.
所以答案是:2019.
【考点精析】关于本题考查的函数奇偶性的性质,需要了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇才能得出正确答案.
练习册系列答案
相关题目