题目内容
【题目】设关于的一元二次方程.
(1)若是从0,1,2,3四个数中任取的一个数, 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;
(2)若时从区间上任取的一个数, 是从区间上任取的一个数,求上述方程有实根的概率.
【答案】(1);(2).
【解析】试题分析:由二次方程有实数根可得满足的条件,(Ⅰ)中由可以取得值得到所有基本事件个数及满足条件的基本事件个数,求其比值可求概率;(Ⅱ)中由范围得到对应的区域,并求得满足的区域,求其面积比可求其概率
试题解析:设事件为“方程有实数根”.
当时,因为方程有实数根,
则
(Ⅰ)基本事件共12个,如下:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2)其中第一个数表示的取值,第二个数表示的取值,事件包含9个基本事件,事件发生的概率为
(Ⅱ)实验的全部结果所构成的区域为,
构成事件的区域为
所以所求的概率为:
【题目】根据国家环保部最新修订的《环境空气质量标准》规定:居民区PM2.5的年平均浓度不得超过35微克/立方米,PM2.5的24小时平均浓度不得超过75微克/立方米。某城市环保部分随机抽取的一居民区过去20天PM2.5的24小时平均浓度的监测数据,数据统计如下:
组别 | PM2.5平均浓度 | 频数 | 频率 |
第一组 | (0,25] | 3 | 0.15 |
第二组 | (25,50] | 12 | 0.6 |
第三组 | (50,75] | 3 | 0.15 |
第四组 | (75,100] | 2 | 0.1 |
(Ⅰ)从样本中PM2.5的24小时平均浓度超过50微克/立方米的5天中,随机抽取2天,求恰好有一天PM2.5的24小时平均浓度超过75微克/立方米的概率;
(II)求样本平均数,并根据样本估计总计的思想,从PM2.5的年平均浓度考虑,判断该居民区的环境是否需要改进?并说明理由.