题目内容

若函数y=f(x)满足:集合A={f(n)|n∈N*}中至少有三个不同的数成等差数列,则称函数f(x)是“等差源函数”,则下列四个函数中,“等差源函数”的个数是(  )
①y=2x+1;
②y=log2x;
③y=2x+1;
④y=sin(
π
4
x+
π
4
A、1B、2C、3D、4
考点:进行简单的合情推理
专题:综合题,推理和证明
分析:利用新定义,进行验证即可得出结论.
解答:解:①y=2x+1,n∈N*,是等差源函数;
②∵log21,log22,log24构成等差数列,∴y=log2x是等差源函数;
③y=2x+1不是等差源函数,因为若是,则2(2p+1)=(2m+1)+(2n+1),则2p+1=2m+2n
∴2p+1-n=2m-n+1,左边是偶数,右边是奇数,故y=2x+1不是等差源函数;
④y=sin(
π
4
x+
π
4
)是周期函数,显然是等差源函数.
故选:C.
点评:本题考查等差源函数的判断与证明,是中档题,解题时要认真审题,注意反证法的合理运用.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网