题目内容
【题目】已知的三个顶点,其外接圆为圆.
(1)若直线过点,且被圆截得的弦长为,求直线的方程;
(2)对于线段(包括端点)上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求圆的半径的取值范围.
【答案】(1)(2)或(3)
【解析】
试题(1)借助题设条件直接求解;(2)借助题设待定直线的斜率,再运用直线的点斜式方程求解;(3)借助题设建立关于的不等式,运用分析推证的方法进行求解.
试题解析:
(1)的面积为2;
(2)线段的垂直平分线方程为,线段的垂直平分线方程为,
所以外接圆圆心,半径,圆的方程为,
设圆心到直线的距离为,因为直线被圆截得的弦长为2,所以.
当直线垂直于轴时,显然符合题意,即为所求;
当直线不垂直于轴时,设直线方程为,则,解得,
综上,直线的方程为或.
(3)直线的方程为,设,,
因为点是线段的中点,所以,又,都在半径为的圆上,
所以即
因为该关于,的方程组有解,即以为圆心,为半径的圆与以为圆心,为半径的圆有公共点,所以,
又,所以对成立.
而在上的值域为,所以且.
又线段与圆无公共点,所以对成立,即.
故圆的半径的取值范围为.
练习册系列答案
相关题目