题目内容
【题目】已知函数.
(Ⅰ)若函数在处的切线方程为,求和的值;
(Ⅱ)讨论方程的解的个数,并说明理由.
【答案】(1) , ;(2)当时,方程无解;当或时,方程有唯一解;当时,方程有两解.
【解析】试题分析: (Ⅰ)求出导函数,利用在处的切线方程为,列出方程组求解;(Ⅱ)通过 ,判断方程的解出函数的导数判断函数的单调性,求出极小值,分析出当 时,方程无解;当或时,方程有唯一解;当时,方程有两解.
试题解析:(Ⅰ)因为,又在处得切线方程为,
所以,解得.
(Ⅱ)当时, 在定义域内恒大于0,此时方程无解.
当时, 在区间内恒成立,
所以为定义域为增函数,因为,
所以方程有唯一解.
当时, .
当时, , 在区间内为减函数,
当时, , 在区间内为增函数,
所以当时,取得最小值.
当时, ,无方程解;
当时, ,方程有唯一解.
当时, ,
因为,且,所以方程在区间内有唯一解,
当时,设,所以在区间内为增函数,
又,所以,即,故.
因为,所以.
所以方程在区间内有唯一解,所以方程在区间内有两解,
综上所述,当时,方程无解.
练习册系列答案
相关题目