题目内容
12.已知直线的倾斜角α满足sinα+cosα=-$\frac{1}{5}$,求直线斜率.分析 联立$\left\{\begin{array}{l}{sinα+cosα=-\frac{1}{5}}\\{si{n}^{2}α+co{s}^{2}α=1}\end{array}\right.$,解出sinα,cosα,即可得出tanα.
解答 解:联立$\left\{\begin{array}{l}{sinα+cosα=-\frac{1}{5}}\\{si{n}^{2}α+co{s}^{2}α=1}\end{array}\right.$,
解得$\left\{\begin{array}{l}{sinα=-\frac{4}{5}}\\{cosα=\frac{3}{5}}\end{array}\right.$,或$\left\{\begin{array}{l}{sinα=\frac{3}{5}}\\{cosα=-\frac{4}{5}}\end{array}\right.$.
取$\left\{\begin{array}{l}{sinα=\frac{3}{5}}\\{cosα=-\frac{4}{5}}\end{array}\right.$.
∴tanα=-$\frac{3}{4}$.
∴直线斜率为-$\frac{3}{4}$.
点评 本题考查了三角函数基本关系式、直线的斜率,考查了计算能力,属于中档题.
练习册系列答案
相关题目