题目内容
已知△ABC外接圆半径R=,且∠ABC=120°,BC=10,边BC在x轴上且y轴垂直平分BC边,则过点A且以B,C为焦点的双曲线方程为( )
A.-=1 | B.-=1 |
C.-=1 | D.-=1 |
D
由正弦定理知sin∠BAC==,
∴cos∠BAC=,
|AC|=2Rsin∠ABC=2××=14,
sin∠ACB=sin(60°-∠BAC)
=sin60°cos∠BAC-cos60°sin∠BAC
=×-×
=,
∴|AB|=2Rsin∠ACB=2××=6,
∴2a=||AC|-|AB||=14-6=8,∴a=4,
又c=5,∴b2=c2-a2=25-16=9,
∴所求双曲线方程为-=1.故选D.
∴cos∠BAC=,
|AC|=2Rsin∠ABC=2××=14,
sin∠ACB=sin(60°-∠BAC)
=sin60°cos∠BAC-cos60°sin∠BAC
=×-×
=,
∴|AB|=2Rsin∠ACB=2××=6,
∴2a=||AC|-|AB||=14-6=8,∴a=4,
又c=5,∴b2=c2-a2=25-16=9,
∴所求双曲线方程为-=1.故选D.
练习册系列答案
相关题目