题目内容
【题目】已知椭圆的左右焦点分别为,离心率为,是椭圆上的一个动点,且面积的最大值为.
(1)求椭圆的方程;
(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.
【答案】(1) (2)见解析
【解析】
(1)由题可得当为的短轴顶点时,的面积有最大值,根据椭圆的性质得到、、的方程,解方程即可得到椭圆的方程;
(2)设出直线的方程,与椭圆方程联立消去,得到关于的一元二次方程,表示出根与系数的关系,即可得到的中点坐标,要使,则直线为线段的垂直平分线,利用直线垂直的关系即可得到关于的式子,再利用基本不等式即可求出的取值范围。
解(1)当为的短轴顶点时,的面积有最大值
所以,解得,故椭圆的方程为:.
(2)设直线的方程为,
将代入,得;
设,线段的中点为,
,
即
因为,所以直线为线段的垂直平分线,
所以,则,即,
所以,
当时,因为,所以,
当时,因为,所以.
综上,存在点,使得,且的取值范围为.
练习册系列答案
相关题目