题目内容
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,以坐标原点为极点, 轴正半轴为极轴建立极坐标系,已知曲线的极坐标方程为: ,直线的参数方程是(为参数, ).
(1)求曲线的直角坐标方程;
(2)设直线与曲线交于两点,且线段的中点为,求.
【答案】(I) ;(II).
【解析】试题分析:(I)由极坐标与直角坐标互化的关系式 可将曲线极坐标方程化为普通方程.(II)将直线的参数方程代入取曲线的普通方程中, 为中点,由的几何意义知故得到关于的方程,求出倾斜角.
试题解析:
(I)曲线,即,
于是有,
化为直角坐标方程为:
(II)方法1:
即
由的中点为得,有,所以
由 得
方法2:设,则
,
∵,∴,由 得.
方法3: 设,则由是的中点得
,
∵,∴,知
∴,由 得.
方法4:依题意设直线,与联立得,
即
由得 ,因为 ,所以.
练习册系列答案
相关题目
【题目】某出租车公司响应国家节能减排的号召,已陆续购买了140辆纯电动汽车作为运营车辆,目前我国主流纯电动汽车按续航里程数.(单位:公里)分为3类,即类:,类:, 类:,该公司对这140辆车的行驶总里程进行统计,结果如下表:
类型 | 类 | 类 | 类 |
已行驶总里程不超过10万公里的车辆数 | 10 | 40 | 30 |
已行驶总里程超过10万公里的车辆数 | 20 | 20 | 20 |
(1)从这140辆汽车中任取一辆,求该车行驶总里程超过10万公里的概率;
(2)公司为了了解这些车的工作状况,决定抽取了14辆车进行车况分析,按表中描述的六种情况进行分层抽样,设从类车中抽取了辆车.
①求的值;
②如果从这辆车中随机选取两辆车,求恰有一辆车行驶总里程超过10万公里的概率.