题目内容
(本小题12分) 已知曲线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
的极坐标方程为
,曲线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
的方程是
, 直线
的参数方程是:
.
(1)求曲线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
的直角坐标方程,直线
的普通方程;
(2)求曲线![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
上的点到直线
距离的最小值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508314195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508329580.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508360240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508392616.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005084231153.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508454525.png)
(1)求曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508314195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
(2)求曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508360240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
解: (1)
;(2)到直线
距离的最小值为
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508704670.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508735482.png)
试题分析:(Ⅰ)利用直角坐标与极坐标间的关系:ρcosθ=x,ρsinθ=y,ρ2=x2+y2,进行代换即得C的直角坐标方程,将直线l的参数消去得出直线l的普通方程.
(Ⅱ)曲线C1的方程为4x2+y2=4,设曲线C1上的任意点(cosθ,2sinθ),利用点到直线距离公式,建立关于θ的三角函数式求解.
解: (1) 曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508314195.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508797727.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508704670.png)
(2)设曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508282313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508360240.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508891720.png)
该点到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240005089221913.png)
到直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508407280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824000508735482.png)
点评:解决该试题的关键是对于椭圆上点到直线距离的最值问题,一般用参数方程来求解得到。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目