题目内容
已知函数.(1)若在上是增函数,求实数的取值范围;(2)若是的极值点,求在上的最小值和最大值.
(1)。(2)上最大值是,最小值是
解析
(本小题满分12分)已知数列的前项和为,函数,(其中均为常数,且),当时,函数取得极小值.均在函数的图像上(其中是的导函数).(Ⅰ)求的值;(Ⅱ)求数列的通项公式.
(本小题满分14分)已知函数.(Ⅰ) 求函数的单调区间;(Ⅱ)若函数的图像在点处的切线的倾斜角为,问:在什么范围取值时,对于任意的,函数g(x)=x3 +x2在区间上总存在极值?(Ⅲ)当时,设函数,若在区间上至少存在一个,使得成立,试求实数的取值范围.
已知函数,.①时,求的单调区间; ②若时,函数的图象总在函数的图象的上方,求实数的取值范围.
(本小题满分14分)(注意:仙中、一中、八中的学生三问全做,其他学校的学生只做前两问)已知函数(Ⅰ)若,试确定函数的单调区间;(Ⅱ)若,且对于任意,恒成立,试确定实数的取值范围;(Ⅲ)设函数,求证:.
(本题满分14分)设 (1)若在上递增,求的取值范围;(2)若在上的存在单调递减区间 ,求的取值范围
(本题满分12分)已知函数,.(1)求函数的单调区间和极值;(2)已知函数的图象与函数的图象关于直线对称;证明:当时,(3)如果且,证明
已知函数,().(Ⅰ)已知函数的零点至少有一个在原点右侧,求实数的范围.(Ⅱ)记函数的图象为曲线.设点,是曲线上的不同两点.如果在曲线上存在点,使得:①;②曲线在点处的切线平行于直线,则称函数存在“中值相依切线”.试问:函数(且)是否存在“中值相依切线”,请说明理由.
(本小题满分12分)已知函数.(I)若,求函数的极值;(II)若对任意的,都有成立,求的取值范围.