题目内容
【题目】从某企业生产的某种产品中抽取件,测量这些产品的一项质量指标值,由测量结果得如频率分布直方图:
(1)求这件产品质量指标值的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);
(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数,近似为样本方差.
①利用该正态分布,求;
②某用户从该企业购买了件这种产品,记表示这件产品中质量指标值位于区间的产品件数.利用①的结果,求.
附:.若,则,.
【答案】(1),;(2)68.26
【解析】试题分析:(Ⅰ)运用离散型随机变量的期望和方差公式,即可求出;(Ⅱ)(i)由(Ⅰ)知Z~N(200,150),从而求出P(187.8<Z<212.2),注意运用所给数据;(ii)由(i)知X~B(100,0.6826),运用EX=np即可求得
试题解析:(1)抽取产品的质量指标值的样本平均数和样本方差s2分别为
=170×0.02+180×0.09+190×0.22+200×0.33+210×0.24+220×0.08+230×0.02=200.
s2=(-30)2×0.02+(-20)2×0.09+(-10)2×0.22+0×0.33+102×0.24+202×0.08+302×0.02=150.…6分
(2)(i)由(1)知,Z~N(200,150),
从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.682 6.
(ii)由(i)知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.682 6,
依题意知X~B(100,0.682 6),
所以EX=100×0.682 6=68.26.
练习册系列答案
相关题目