题目内容
【题目】在城市旧城改造中,某小区为了升级居住环境,拟在小区的闲置地中规划一个面积为的矩形区域(如图所示),按规划要求:在矩形内的四周安排宽的绿化,绿化造价为200元/,中间区域地面硬化以方便后期放置各类健身器材,硬化造价为100元/.设矩形的长为.
(1)设总造价(元)表示为长度的函数;
(2)当取何值时,总造价最低,并求出最低总造价.
【答案】(1),(2)当时,总造价最低为元
【解析】
(1)根据题意得矩形的长为,则矩形的宽为,中间区域的长为,宽为列出函数即可。
(2)根据(1)的结果利用基本不等式即可。
(1)由矩形的长为,则矩形的宽为,
则中间区域的长为,宽为,则定义域为
则
整理得,
(2)
当且仅当时取等号,即
所以当时,总造价最低为元
练习册系列答案
相关题目
【题目】某市通过随机询问100名不同年级的学生是否能做到“扶跌倒老人”,得到如下列联表:
做不到 | 能做到 | |
高年级 | 45 | 10 |
低年级 | 30 | 15 |
则下列结论正确的是( )
附参照表:
0.10 | 0.025 | 0.01 | |
2.706 | 5.024 | 6.635 |
参考公式:,其中
A. 在犯错误的概率不超过的前提下,认为“学生能否做到‘扶跌倒老人’与年级高低有关”
B. 在犯错误的概率不超过的前提下,“学生能否做到‘扶跌倒老人’与年级高低无关”
C. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低有关”
D. 有以上的把握认为“学生能否做到‘扶跌倒老人’与年级高低无关”