题目内容

【题目】在△ABC中,角A、B、C的对边分别为a,b,c,且满足(2a﹣c)cosB=bcosC
(1)求角B的大小;
(2)若b= ,a+c=4,求△ABC的面积S.

【答案】
(1)解:在△ABC中,由(2a﹣c)cosB=bcosC以及正弦定理可得

2sinAcosB﹣sinCcosB=sinBcosC,即 2sinAcosB=sin(B+C)=sinA,

求得cosB= ,可得 B=


(2)解:若 ,由余弦定理可得 cosB= = = =

故有ac=3,

故△ABC的面积S= acsinB= ×3×sin =


【解析】(1)在△ABC中,由(2a﹣c)cosB=bcosC以及正弦定理可得2sinAcosB=sin(B+C)=sinA,求得cosB的值,
可得 B的值.(2)由条件利用余弦定理可得 cosB= = ,可得ac=3,从而求得△ABC的面积S= acsinB 的值.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网