题目内容

选修4-1:几何证明选讲
如图所示,已知PA与⊙O相切,A为切点,过点P的割线交圆于B、C两点,弦CDAP,AD、BC相交于点E,F为CE上一点,且DE2=EF•EC.
(1)求证:CE•EB=EF•EP;
(2)若CE:BE=3:2,DE=3,EF=2,求PA的长.
(I)证明:∵DE2=EF•EC,∠DEF公用,
∴△DEF△CED,
∴∠EDF=∠C.
又∵弦CDAP,∴∠P=∠C,
∴∠EDF=∠P,∠DEF=∠PEA
∴△EDF△EPA.
EA
EF
=
EP
ED
,∴EA•ED=EF•EP.
又∵EA•ED=CE•EB,
∴CE•EB=EF•EP;
(II)∵DE2=EF•EC,DE=3,EF=2.
∴32=2EC,∴CE=
9
2

∵CE:BE=3:2,∴BE=3.
由(I)可知:CE•EB=EF•EP,∴
9
2
×3=2EP
,解得EP=
27
4

∴BP=EP-EB=
27
4
-3=
15
4

∵PA是⊙O的切线,∴PA2=PB•PC,
PA2=
15
4
×(
27
4
+
9
2
)
,解得PA=
15
3
4
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网