题目内容
【题目】设函数f(x)=aex﹣x﹣1,a∈R.
(Ⅰ)当a=1时,求f(x)的单调区间;
(Ⅱ)当x∈(0,+∞)时,f(x)>0恒成立,求a的取值范围;
(Ⅲ)求证:当x∈(0,+∞)时,ln > .
【答案】解:(Ⅰ)当a=1时,则f(x)=ex﹣x﹣1,f'(x)=ex﹣1;
令f'(x)=0,得x=0;
∴当x<0时,f'(x)<0,f(x)在(﹣∞,0)上单调递减;
当x≥0时,f'(x)≥0,h(x)在(0,+∞)上单调递增;
即a=1时,f(x)的单调减区间为(﹣∞,0),单调赠区间为[0,+∞);
(Ⅱ)∵ex>0;
∴f(x)>0恒成立,等价于 恒成立;
设 ,x∈(0,+∞), ;
当x∈(0,+∞)时,g′(x)<0;
∴g(x)在(0,+∞)上单调递减;
∴x∈(0,+∞)时,g(x)<g(0)=1;
∴a≥1;
∴a的取值范围为[1,+∞);
(Ⅲ)证明:当x∈(0,+∞)时, 等价于ex﹣xex﹣1>0;
设h(x)=ex﹣xex﹣1,x∈(0,+∞), ;
由(Ⅱ)知,x∈(0,+∞)时,ex﹣x﹣1>0恒成立;
∴ ;
∴h′(x)>0;
∴h(x)在(0,+∞)上单调递增;
∴x∈(0,+∞)时,h(x)>h(0)=0;
因此当x∈(0,+∞)时, .
【解析】(Ⅰ)a=1时得出f(x),进而得到f′(x)=ex﹣1,这样便可判断导数符号,根据符号即可得出f(x)的单调区间;(Ⅱ)可以由f(x)>0恒成立得到 恒成立,这样设 ,求导,根据导数符号便可判断g(x)在(0,+∞)上单调递减,这便可得到g(x)<1,从而便可得出a的取值范围;(Ⅲ)容易得到 等价于ex﹣xex﹣1>0,可设h(x)=ex﹣xex﹣1,求导数,并根据上面的f(x)>0可判断出导数h′(x)>0,从而得到h(x)>h(0)=0,这样即可得出要证明的结论.
【考点精析】本题主要考查了利用导数研究函数的单调性和函数的最大(小)值与导数的相关知识点,需要掌握一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减;求函数在上的最大值与最小值的步骤:(1)求函数在内的极值;(2)将函数的各极值与端点处的函数值,