题目内容
已知数列满足,其中N*.
(Ⅰ)设,求证:数列是等差数列,并求出的通项公式;
(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
(Ⅰ)设,求证:数列是等差数列,并求出的通项公式;
(Ⅱ)设,数列的前项和为,是否存在正整数,使得对于N*恒成立,若存在,求出的最小值,若不存在,请说明理由.
(I).
(II) 的最小值为.
(II) 的最小值为.
试题分析:(I)证明
,
所以数列是等差数列,,因此,由得.
(II),,所以,
依题意要使对于恒成立,只需
解得或,所以的最小值为.
点评:中档题,利用数列的递推公式,进一步确定数列的特征,从而得到等差数列通项公式,数列求和问题中, “错位相减法”、“裂项相消法”、“分组求和法”是高考常常考查到数列求和方法。本题为证明不等式,先求和、再放缩、做结论。
练习册系列答案
相关题目