题目内容
【题目】某校为了了解篮球运动是否与性别相关,在高一新生中随机调查了40名男生和40名女生,调查的结果如下表:
喜欢 | 不喜欢 | 总计 | |
女生 | 8 | ||
男生 | 20 | ||
总计 |
(1)根据题意完成上面的列联表,并用独立性检验的方法分析,能否在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关?
(2)从女生中按喜欢篮球运动与否,用分层抽样的方法抽取5人做进一步调查,从这5人中任选2人,求2人都喜欢篮球运动的概率.
附:
0.10 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
.
【答案】(1)填表、分析见详解,能在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关;(2).
【解析】
(1)根据男生和女生各有40个,即可得到表格中的所有数据,再根据表格数据,利用参考公式,计算,即可进行判断;
(2)先根据分层抽样的等比例抽取的性质,计算出5人中喜欢篮球和不喜欢篮球的人;从而列举出所有从5人中抽取2人的可能性,再找出满足题意的可能性,用古典概型概率计算公式即可求得.
(1)填表如下:
喜欢 | 不喜欢 | 总计 | |
女生 | 32 | 8 | 40 |
男生 | 20 | 20 | 40 |
合计 | 52 | 28 | 80 |
∴.
所以能在犯错的概率不超过0.01的前提下认为喜欢篮球运动与性别有关.
(2)从女生中按喜欢篮球运动与否,用分层抽样的方法抽取5人,
则其中喜欢篮球运动的有(人),
不喜欢篮球运动的有(人)
设喜欢篮球运动的4人记为,不喜欢篮球运动的记为,
则从这5人中任选2人的所有结果有:
,共10种.
其中恰好2人都喜欢篮球运动的有,共6种.
所以从这5人中任选2人,2人都喜欢篮球运动的概率为.
【题目】至2018年底,我国发明专利申请量已经连续8年位居世界首位,下表是我国2012年至2018年发明专利申请量以及相关数据.
总计 | ||||||||
年代代码 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 28 |
申请量(万件) | 65 | 82 | 92 | 110 | 133 | 138 | 154 | 774 |
65 | 164 | 276 | 440 | 665 | 828 | 1078 | 3516 |
>
注:年代代码1~7分别表示2012~2018.
(1)可以看出申请量每年都在增加,请问这几年中那一年的增长率达到最高,最高是多少?
(2)建立关于的回归直线方程(精确到0.01),并预测我国发明专利申请量突破200万件的年份.
参考公式:.
【题目】近来天气变化无常,陡然升温、降温幅度大于的天气现象出现增多.陡然降温幅度大于容易引起幼儿伤风感冒疾病.为了解伤风感冒疾病是否与性别有关,在某妇幼保健院随机对人院的名幼儿进行调查,得到了如下的列联表,若在全部名幼儿中随机抽取人,抽到患伤风感冒疾病的幼儿的概率为,
(1)请将下面的列联表补充完整;
患伤风感冒疾病 | 不患伤风感冒疾病 | 合计 | |
男 | 25 | ||
女 | 20 | ||
合计 | 100 |
(2)能否在犯错误的概率不超过的情况下认为患伤风感冒疾病与性别有关?说明你的理由;
(3)已知在患伤风感冒疾病的名女性幼儿中,有名又患黄痘病.现在从患伤风感冒疾病的名女性中,选出名进行其他方面的排查,记选出患黄痘病的女性人数为,求的分布列以及数学期望.下面的临界值表供参考:
参考公式:,其中