题目内容
【题目】已知向量=(2sinx,-1),,函数f(x)=.
(1)求函数f(x)的对称中心;
(2)设△ABC的内角A,B,C所对的边为a,b,c,且a2=bc,求f(A)的取值范围.
【答案】(1)(+,-1)(k∈Z)(2)(-2,1]
【解析】
(1)由已知得f(x)sin2x﹣cos2x﹣1=2sin(2x)﹣1,又2xkπ,得x,得f(x)的对称中心为(,﹣1)(k∈Z);
(2)由a2=bc和余弦定理得0<A,结合正弦函数的图象可得结果.
(1)f(x)2sinxcosx﹣2cos2x
sin2x﹣cos2x﹣1
=2sin(2x)﹣1,
∵2xkπ,∴x,
∴f(x)的对称中心为(,﹣1)(k∈Z);
(2)cosA,
∵y=cosx在[0,π]上是减函数,∴0<A,
f(A)=2sin(2A)﹣1,
∵0<A,∴2A,
∴sin(2A)≤1,∴﹣2<2sin(2A)﹣1≤1
∴f(A)的取值范围为(﹣2,1].
练习册系列答案
相关题目